Lesson 27c. Triple Integrals, cont.

1 Last time: integrating over general 3D regions

- Type A 3D region

$\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A$
- Type B 3D region

$\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x\right] d A$
- Type C 3D region

2 Using different orders of integration

Example 1. Draw the projection of the 3D region below onto the $x y$-plane.

Example 2. Express $\iiint_{E} f(x, y, z) d V$ as an iterated integral, where E is the region in Example 1, using the order of integration $d z d x d y$.

Example 3. Draw the projection of the 3D region in Example 1 (below) onto the $y z$-plane.

Example 4. Express $\iiint_{E} f(x, y, z) d V$ as an iterated integral, where E is the region in Example 1, using the order of integration $d x d z d y$.

Example 5. Draw the projection of the 3D region in Example 1 (below) onto the $x z$-plane.

Example 6. Express $\iiint_{E} f(x, y, z) d V$ as an iterated integral, where E is the region in Example 1, using the order of integration $d y d z d x$.

3 If we have time...

Example 7. Express $\iiint_{E} \sqrt{x^{2}+z^{2}} d V$ as an iterated integral, where E is the region bounded by the paraboloid $y=x^{2}+z^{2}$ and the plane $y=4$.

